博客
关于我
曲奇饼问题
阅读量:751 次
发布时间:2019-03-22

本文共 707 字,大约阅读时间需要 2 分钟。

使用贝叶斯公式计算条件概率

案例背景

碗1和碗2各放30个香草曲奇饼和10个巧克力曲奇饼,分别与10个香草曲奇饼和10个巧克力曲奇饼。我们需要计算从碗1取出香草曲奇饼的概率。

通过贝叶斯定理,可以得到公式:[ P(B_1|V) = \frac{P(B_1) \cdot P(V|B_1)}{P(V)} ]

其中:

  • ( B_1 ):碗1。
  • ( V ):取出的是香草曲奇饼。

概率定义

  • ( P(B_1) = 0.5 )(碗1被选中的概率)。
  • ( P(V|B_1) = \frac{30}{40} = 0.75 )(从碗1中取到香草曲奇饼的概率)。
  • ( P(V) ):取到香草曲奇饼的总概率。
  • 计算总概率

    总样本空间为两个碗,每个碗有40个曲奇饼,总共80个曲奇饼。其中:

    • 香草曲奇饼总数:30(碗1) + 10(碗2)= 40个。
    • 巧克力曲奇饼总数:10(碗1) + 10(碗2)= 20个。

    因此:[ P(V) = \frac{40}{80} = 0.5 ]

    计算条件概率

    代入贝叶斯公式:[ P(B_1|V) = \frac{0.5 \cdot 0.75}{0.5} = 0.6 ]

    即,从碗1中取到香草曲奇饼的概率为60%。

    Python验证

    from thinkbayes import Pmfpmf = Pmf()pmf.Set('Bow1', 0.5)pmf.Set("Bow2", 0.5)pmf.Mult('Bow1', 0.75)pmf.Mult('Bow2', 0.5)pmf.Normalize()print(pmf.Prob('Bow1'))

    输出结果为:

    0.6

    验证结果正确,说明计算无误。

    转载地址:http://eigwk.baihongyu.com/

    你可能感兴趣的文章
    MQTT工作笔记0009---订阅主题和订阅确认
    查看>>
    Mqtt搭建代理服务器进行通信-浅析
    查看>>
    MS Edge浏览器“STATUS_INVALID_IMAGE_HASH“兼容性问题
    查看>>
    ms sql server 2008 sp2更新异常
    查看>>
    MS UC 2013-0-Prepare Tool
    查看>>
    MSBuild 教程(2)
    查看>>
    msbuild发布web应用程序
    查看>>
    MSB与LSB
    查看>>
    MSCRM调用外部JS文件
    查看>>
    MSCRM调用外部JS文件
    查看>>
    MSEdgeDriver (Chromium) 不适用于版本 >= 79.0.313 (Canary)
    查看>>
    MsEdgeTTS开源项目使用教程
    查看>>
    msf
    查看>>
    MSSQL数据库查询优化(一)
    查看>>
    MSSQL数据库迁移到Oracle(二)
    查看>>
    MSSQL日期格式转换函数(使用CONVERT)
    查看>>
    MSTP多生成树协议(第二课)
    查看>>
    MSTP是什么?有哪些专有名词?
    查看>>
    Mstsc 远程桌面链接 And 网络映射
    查看>>
    Myeclipse常用快捷键
    查看>>