博客
关于我
曲奇饼问题
阅读量:751 次
发布时间:2019-03-22

本文共 707 字,大约阅读时间需要 2 分钟。

使用贝叶斯公式计算条件概率

案例背景

碗1和碗2各放30个香草曲奇饼和10个巧克力曲奇饼,分别与10个香草曲奇饼和10个巧克力曲奇饼。我们需要计算从碗1取出香草曲奇饼的概率。

通过贝叶斯定理,可以得到公式:[ P(B_1|V) = \frac{P(B_1) \cdot P(V|B_1)}{P(V)} ]

其中:

  • ( B_1 ):碗1。
  • ( V ):取出的是香草曲奇饼。

概率定义

  • ( P(B_1) = 0.5 )(碗1被选中的概率)。
  • ( P(V|B_1) = \frac{30}{40} = 0.75 )(从碗1中取到香草曲奇饼的概率)。
  • ( P(V) ):取到香草曲奇饼的总概率。
  • 计算总概率

    总样本空间为两个碗,每个碗有40个曲奇饼,总共80个曲奇饼。其中:

    • 香草曲奇饼总数:30(碗1) + 10(碗2)= 40个。
    • 巧克力曲奇饼总数:10(碗1) + 10(碗2)= 20个。

    因此:[ P(V) = \frac{40}{80} = 0.5 ]

    计算条件概率

    代入贝叶斯公式:[ P(B_1|V) = \frac{0.5 \cdot 0.75}{0.5} = 0.6 ]

    即,从碗1中取到香草曲奇饼的概率为60%。

    Python验证

    from thinkbayes import Pmfpmf = Pmf()pmf.Set('Bow1', 0.5)pmf.Set("Bow2", 0.5)pmf.Mult('Bow1', 0.75)pmf.Mult('Bow2', 0.5)pmf.Normalize()print(pmf.Prob('Bow1'))

    输出结果为:

    0.6

    验证结果正确,说明计算无误。

    转载地址:http://eigwk.baihongyu.com/

    你可能感兴趣的文章
    MySQL - 4种基本索引、聚簇索引和非聚索引、索引失效情况、SQL 优化
    查看>>
    MySQL - ERROR 1406
    查看>>
    mysql - 视图
    查看>>
    MySQL - 解读MySQL事务与锁机制
    查看>>
    MTTR、MTBF、MTTF的大白话理解
    查看>>
    mt_rand
    查看>>
    mysql -存储过程
    查看>>
    mysql /*! 50100 ... */ 条件编译
    查看>>
    mudbox卸载/完美解决安装失败/如何彻底卸载清除干净mudbox各种残留注册表和文件的方法...
    查看>>
    mysql 1264_关于mysql 出现 1264 Out of range value for column 错误的解决办法
    查看>>
    mysql 1593_Linux高可用(HA)之MySQL主从复制中出现1593错误码的低级错误
    查看>>
    mysql 5.6 修改端口_mysql5.6.24怎么修改端口号
    查看>>
    MySQL 8.0 恢复孤立文件每表ibd文件
    查看>>
    MySQL 8.0开始Group by不再排序
    查看>>
    mysql ansi nulls_SET ANSI_NULLS ON SET QUOTED_IDENTIFIER ON 什么意思
    查看>>
    multi swiper bug solution
    查看>>
    MySQL Binlog 日志监听与 Spring 集成实战
    查看>>
    MySQL binlog三种模式
    查看>>
    multi-angle cosine and sines
    查看>>
    Mysql Can't connect to MySQL server
    查看>>